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CHAPTER 1

IT’S EASY AS 1 2 3

In this chapter root systems and Chevalley bases for specific matrix representations

of some of the classical, simple, complex Lie algebras are constructed. Each classical, simple,

complex Lie algebra is a Lie subalgebra of glm(C) for some m. The subalgebra of diagonal

matrices in such a Lie algebra will be denoted by H. It turns out that for the matrix

representations considered, H is a maximal toral subalgebra.

For positive integers i, j, and n with 1 ≤ i, j ≤ n, ei,j denotes the square matrix

whose only non-zero entry is a 1 in row i and column j. Denote the n× n diagonal matrix

with entries a1, . . . , an by diag(a1, . . . , an). Then

diag(a1, . . . , an) =



a1 0 . . . 0

0 a2 . . . 0

...
. . .

...

0 . . . an−1

0 . . . 0 an


=

n∑
i=1

aiei,i.

Clearly the set { ei,i | i ≤ i ≤ n } is a basis of the vector space of diagonal matrices.

Suppose h = diag(a1, . . . , an) and 1 ≤ i, j ≤ n, then

[h, ei,j] = hei,j − ei,jh

=
n∑
k=1

ak ek,kei,j −
n∑
k=1

ak ei,jek,k

=
n∑
k=1

ak δk,iek,j −
n∑
k=1

akδj,kei,k

= ai ei,j − aj ei,j

= (ai − aj) ei,j.
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1.1. Type Bn: Odd dimensional, orthogonal Lie algebras

The odd dimensional, orthogonal Lie algebra so2n+1(C), or simply so2n+1, is the set

of all matrices X in gl2n(C) such that

JX = −X tJ

where J =
[

1 0 0
0 0 In
0 In 0

]
. Suppose X =

[
a s t
u A B
v C D

]
where a is a complex number, s, t, u, v are

vectors with n components, and A,B,C,D are n × n matrices. Then JX = −X tJ if and

only if 
1 0 0

0 0 In

0 In 0



a s t

u A B

v C D

 =


−a −ut −vt

−st −At −Ct

−tt −Bt −Dt




1 0 0

0 0 In

0 In 0

 ,
which is if and only if

a = 0 u = −tt v = −st D = −At, B = −Bt, and C = −Ct.

If the ith entry of s is si, i
th entry of t is ti, the (i, j) entry of A is ai,j, the (i, j) entry of B

is bi,j, and the (i, j) entry of C is ci,j, then
[
a s t
u A B
v C D

]
is in so2n+1 if and only if


a s t

u A B

v C D

 =



0 s1 s2 . . . sn t1 t2 . . . tn

−t1 a1,1 a1,2 . . . a1,n 0 b1,2 . . . b1,n

−t2 a2,1 a2,2 . . . a2,n −b2,1 0 . . . b2,n

...
...

...
. . .

...
...

...
. . .

...

−tn an,1 an,2 . . . an,n −bn,1 −bn,2 . . . 0

−s1 0 c1,2 . . . c1,n −a1,1 −an,2 . . . −an,1

−s2 −c2,1 0 . . . c1,n −a2,1 −a2,2 . . . −a2,n

...
...

...
. . .

...
...

...
. . .

...

−sn −cn,1 −cn,2 . . . 0 −a1,n −an,2 . . . −an,n



.

For 1 ≤ i ≤ n define

di = ei+1,i+1 − en+i+1,n+i+1.
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Then

BH = { di | 1 ≤ i ≤ n } = { ei+1,i+1 − en+i+1,n+i+1 | 1 ≤ i ≤ n }.

is a basis of H.

For 1 ≤ i ≤ n, define xi in H∗ by

xi(h) = ai when h = diag(0, a1, . . . , an,−a1, . . . ,−an).

Then xi(h) is the coefficient of di when h is expressed as a linear combination of vectors in

BH .

The set

B = BH ∪ { e1,j+1 − en+j+1,1 | 1 ≤ j ≤ n } ∪ { e1,n+j+1 − ej+1,1 | 1 ≤ j ≤ n }

∪ { ei+1,j+1 − en+j+1,n+i+1 | 1 ≤ i 6= j ≤ n } ∪ { ei+1,n+j+1 − ej+1,n+i+1 | 1 ≤ i < j ≤ n }

∪ { en+i+1,j+1 − en+j+1,i+1 | 1 ≤ i < j ≤ n }

is a basis of so2n+1. In particular, dim so2n+1 = 3n+ n2 − n+ 2
(
n
2

)
= 2n2 + n.

Proposition 1.1. The set B \ BH consists of root vectors.

Proof. This is proved by direct computation. There are five cases.

Suppose that h = diag(0, a1, . . . , an,−a1, . . . ,−an) is in H.

Consider e1,j+1 − en+j+1,1 where 1 ≤ j ≤ n. Then

[h, e1,j+1 − en+j+1,1] = [h, e1,j+1]− [h, en+j+1,1]

= −aj e1,j+1 − aj en+j+1,1

= (−aj) (e1,j+1 − en+j+1,1)

= (−xj)(h) (e1,j+1 − en+j+1,1).

Thus, e1,j+1− en+j+1,1 is a root vector. The corresponding root is the linear function −xj in

H∗.

3



Consider ei+1,j+1 − en+j+1,n+i+1 where 1 ≤ i 6= j ≤ n. Then

[h, ei+1,j+1 − en+j+1,n+i+1] = [h, ei+1,j+1]− [h, en+j+1,n+i+1]

= (ai − aj) ei+1,j+1 − (−aj + ai) en+j+1,n+i+1

= (ai − aj) (ei+1,j+1 − en+j+1,n+i+1)

= (xi − xj)(h) (ei+1,j+1 − en+j+1,n+i+1).

Thus, ei+1,j+1 − en+j+1,n+i+1 is a root vector. The corresponding root is the linear function

xi − xj in H∗.

Consider ei+1,n+j+1 − ej+1,n+i+1 where 1 ≤ i < j ≤ n. Then

[h, ei+1,n+j+1 − ej+1,n+i+1] = [h, ei+1,n+j+1]− [h, ej+1,n+i+1]

= (ai + aj) ei+1,n+j+1 − (aj + ai) ej+1,n+i+1

= (ai + aj) (ei+1,n+j+1 − ej+1,n+i+1)

= (xi + xj)(h) ei+1,n+j+1 − ej+1,n+i+1.

Thus, ei+1,n+j+1 − ej+1,n+i+1 is a root vector. The corresponding root is the linear function

xi + xj in H∗.

The other two cases are similar: e1,n+j+1− ej+1,1 is a root vector and the correspond-

ing root is the linear function xj in H∗; en+i+1,j+1 − ej+1,n+i+1 is a root vector and the

corresponding root is the linear function −xi − xj in H∗.

The computations above are summarized in Table 1.1. �

Corollary 1.2. The the subalgebra H is a maximal toral subalgebra and the root system

of (so2n+1, H) is

Φ = {±(xi ± xj) | 1 ≤ i < j ≤ n } ∪ { 2xi | 1 ≤ i ≤ n }.

Proof. By the proposition, so2n+1 has a root space decomposition. Suppose that H ′ is

a toral subalgebra containing H. Just suppose that H ′ properly contains H. Then H ′ is

abelian and there is an element h′ in H that is a linear combination of the basis elements in

4



i, j α eα

1 ≤ j ≤ n −xj e1,j+1 − en+j+1,1

1 ≤ j ≤ n xj e1,n+j+1 − ej+1,1

1 ≤ i 6= j ≤ n xi − xj ei+1,j+1 − en+j+1,n+i+1

1 ≤ i < j ≤ n xi + xj ei+1,n+j+1 − ej+1,n+i+1

1 ≤ i < j ≤ n −xi − xj en+i+1,j+1 − ej+1,n+i+1

Table 1.1. Roots and root vectors for so2n+1(C)

B \ BH . Write h′ = vα + h′′ where vα is a non-zero vector in the α root space. Then vα is

a non-zero multiple of the root vector eα in B \ BH . Fix h in H such that h is not in kerα,

then [h, h′] = [h, vα + h′′] = α(h)vα + [h, h′′]. Then α(h)vα 6= 0 and [h, h′′] is in the span of

B \ (BH ∪ {eα}). Therefore, [h, h′] 6= 0. This contradicts the fact that H ′ is abelian. Thus,

H ′ = H and so H is maximal. �

For 1 ≤ i ≤ n define αi in H∗ by

αi = xi − xi+1 (1 ≤ i ≤ n− 1),

αn = xn.

Set Π = {αi | 1 ≤ i ≤ n }. It’s easy to see that Π is a basis of H∗. In Table 1.2 each root

in Φ is given as a linear combination of roots in Π. Notice that the roots xi − xj with i 6= j

from Table 1.1 are split into two subsets depending on whether or not i < j.

By direct inspection, there is a unique root with maximal height, this is the highest

root. The highest root is x1 + x2 = α1 + 2α2 + · · ·+ 2αn and its height is 2n− 1.

The usual Euclidean metric on H∗ is defined by

d(
n∑
i=1

aixi,

n∑
i=1

bixi) =

√√√√ n∑
i=1

|ai − bi|2.
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i, j α =
∑n

i=1miαi ht(α)

1 ≤ i < j ≤ n xi − xj = αi + · · ·+ αj−1 j − i

1 ≤ i ≤ n xi = αi + · · ·+ αn−1 + αn n− i+ 1

1 ≤ i < j ≤ n xi + xj = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−1 + 2αn 2n− i− j + 2

1 ≤ i < j ≤ n −xi + xj = −αi − · · · − αj−1 −j + i

1 ≤ i ≤ n −xi = −αi − · · · − αn−1 − αn −n+ i− 1

1 ≤ i < j ≤ n −xi − xj = −αi − · · · − αj−1 − 2αj − · · · − 2αn−1 − 2αn −2n+ i+ j − 2

Table 1.2. Roots expressed as linear combinations of vectors in Π

With respect to this metric, the roots ±(xi ± xj) with i 6= j have length
√

2 and the roots

±xi have length 1. Thus, there are two root lengths. Roots with minimum length are called

short roots and roots with maximum length are called long roots. The highest root is a long

root.

By direct inspection, there is a unique highest short root, x1 = α1 + · · · + αn, with

height n.

Notice that if α =
∑n

i=1miαi, then the coefficients mi are either all non-negative or

all non-positive. Define

Φ+ =
{
α =

n∑
i=1

miαi | mi≥0∀ 1 ≤ i ≤ n
}

and

Φ− =
{
α =

n∑
i=1

miαi | mi≤0 ∀ 1 ≤ i ≤ n
}
.

Then Φ− = −Φ+ and Φ = Φ+
∐

Φ−.

We next compute the elements tαi in H for 1 ≤ i ≤ n. Using the basis B of so2n+1

it is straightforward to compute the restriction of the Killing form to H by computing the

matrices of adh and adh′, and then tr(adh ◦ adh′) for h and h′ in H. The result is

κ(h, h′) =
∑
α∈Φ

α(h)α(h′).

6



If h = diag(0, a1, . . . , an,−a1, . . . ,−an) and h′ = diag(0, a′1, . . . , a
′
n,−a′1, . . . ,−a′n), then

α(h)α(h′) is given in Table 1.3.

α α(h)α(h′)

xi − xj (ai − aj)(a′i − a′j)

xi (ai)(a
′
i) = aia

′
i

xi + xj (ai + aj)(a
′
i + a′j)

−xi + xj (−ai + aj)(−a′i + a′j) = (ai − aj)(a′i − a′j)

−xi (−ai)(−a′i) = aia
′
i

−xi − xj = (−ai − aj)(−a′i − a′j) = (ai + aj)(a
′
i + a′j)

Table 1.3. α(h)α(h′) when h = diag(a1, . . . , an) and h′ = diag(a′1, . . . , a
′
n)

We can now compute κ(h, h′) in terms of the coefficients of h and h′ when h and h′

are expressed as linear combinations of {x1, . . . , xn}.

(1)

κ(h, h′) =
∑

1≤i<j≤n

2
(
(ai − aj)(a′i − a′j) + (ai + aj)(a

′
i + a′j)

)
+ 2

n∑
i=1

(aia
′
i)

=
∑

1≤i<j≤n

(4aia
′
i + 4aja

′
j) +

n∑
i=1

2aia
′
i

=
n∑
i=1

aia
′
i(2 + 4(n− i) + 4(i− 1))

= (4n− 2)
n∑
i=1

aia
′
i.

The penultimate equality in (1) is most easily seen by arranging the summands in an n× n

7



array.

2a1a
′
1 4a1a

′
1 + 4a2a

′
2 4a1a

′
1 + 4a3a

′
3 . . . . . . . . . 4a1a

′
1 + 4ana

′
n

2a2a
′
2 4a2a

′
2 + 4a3a

′
3 4a2a

′
2 + 4ana

′
n

2a3a
′
3 4a3a

′
3 + 4ana

′
n

...

. . .
...

4an−2a
′
n−2 + 4ana

′
n

2ana
′
n

For 1 ≤ i ≤ n. Then the element tαi in H is defined by the condition that

κ(h, tαi) = αi(h) for all h in H.

Fix 1 ≤ i ≤ n− 1 and suppose tαi = diag(0, t1, . . . , tn,−t1, . . . ,−tn). Then

ai − ai+1 = (4n− 2)(a1t1 + · · ·+ aiti + ai+1ti+1 + · · ·+ antn)

when h = diag(0, a1, . . . , an,−a1, . . . ,−an). Thus, t1, . . . , tn are such that

a1t1 + · · ·+ ai
(
ti − 1

4n−2

)
+ ai+1

(
ti+1 + 1

4n−2

)
+ · · ·+ antn = 0

for all a1, . . . , an in C. Taking aj = 1 and ak = 0 for k 6= j we see that

tj =


1

4n−2
j = i

− 1
4n−2

j = i+ 1

0 j 6= i, i+ 1.

Therefore, for 1 ≤ i ≤ n− 1, tαi = 1
4n−2

(di − di+1).

Now consider tαn . Say tαi = diag(0, t1, . . . , tn,−t1, . . . ,−tn). Then

an = (4n− 2)(a1t1 + · · ·+ aiti + ai+1ti+1 + · · ·+ antn)

when h = diag(0, a1, . . . , an,−a1, . . . ,−an). Thus, t1, . . . , tn are such that

a1t1 + · · ·+ an−1tn−1 + an
(
tn − 1

4n−2

)
= 0

8



for all a1, . . . , an in C. Taking aj = 1 and ak = 0 for k 6= j we see that

tj =


1

4n−2
j = n

0 j 6= n.

Therefore, tαn = 1
4n−2

dn.

For 1 ≤ i ≤ n− 1 we have

κ(tαi , tαi) = (4n− 2)
(

1
(4n−2)2

+ 1
(4n−2)2

)
=

1

2n− 1
.

Also

κ(tαn , tαn) = (4n− 2)
1

(4n− 2)2
=

1

4n− 2
.

Therefore

hαi = (4n− 2)tαi = di − di+1 (1 ≤ i ≤ n− 1),

hαn = (8n− 4)tαn = 2dn.

The Cartan matrix of so2n+1 (or of Φ, when tαi is identified with α̌i) is the matrix

C(so2n+1) whose (i, j)-entry is αi(hαj). Using the computations above we see that

C(so2n+1) =



2 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0

...
. . . . . . . . .

...

0 . . . 2 −1 0

0 . . . −1 2 −2

0 . . . 0 −1 2


.

1.2. Type Dn: Even dimensional, orthogonal Lie algebras

9



CHAPTER 2

AS SIMPLE AS DO RE MI

2.1. Definition of H and the Uniformly Expanding Property

In this section we define the family H and we establish basic dynamical properties of

a map fa ∈ H. Then we we prove the important Lemma 2.1.

i, j α =
∑n

i=1miαi ht(α)

1 ≤ i < j ≤ n xi − xj = αi + · · ·+ αj−1 j − i

1 ≤ i ≤ n xi = αi + · · ·+ αn−1 + αn n− i+ 1

1 ≤ i < j ≤ n xi + xj = αi + · · ·+ αj−1 + 2αj + · · ·+ 2αn−1 + 2αn 2n− i− j + 2

1 ≤ i < j ≤ n −xi + xj = −αi − · · · − αj−1 −j + i

1 ≤ i ≤ n −xi = −αi − · · · − αn−1 − αn −n+ i− 1

1 ≤ i < j ≤ n −xi − xj = −αi − · · · − αj−1 − 2αj − · · · − 2αn−1 − 2αn −2n+ i+ j − 2

Table 2.1. Roots expressed as linear combinations of vectors in Π

2.1.1. Definition of H

We define the family H as a family of maps in the Speiser class of transcendental

entire functions of finite singular type.

Let a = (a0, a1, · · · , an) ∈ Cn+1 be a vector such that a0 6= 0, an 6= 0,

Pa(z) = anz
n + · · ·+ a1z + a0 ∈ C[z]

and

ga(z) =
Pa(z)

zk

where k is a positive integer strictly less than n = deg(Pa) ≥ 2. Define

fa(z) = ga ◦ exp(z) = anenz+an−1e(n−1)z+···+a1ez+a0
ezk

=
∑n

j=0 aje
(j−k)z

10



Observe that maps of this form do not have any finite asymptotic values. This is the reason

why we restricted ourselves to integers k satisfying condition 0 < k < n. As it was mentioned

in Chapter 1, the most well known examples of this type of maps are maps from the cosine

family.

We denote by Crit(fa) the set {z : f ′a(z) = 0}. Observe that

f ′a(z) =
n∑
j=0

aj(j − k)e(j−k)z

and that g′a(z) = 0 if and only if zP ′a(z)− kPa(z) = 0, which is equivalent to

n∑
j=0

aj(j − k)zj = 0.

Therefore, there exist n non-zero complex numbers (counting multiplicities) s1, s2, · · · , sn

such that z ∈ Crit(fa) if and only if ez = sk for some k = 1, 2, · · · , n i.e.

{zk = log sk + 2πim : m ∈ Z, k = 1, · · · , n}

is the set of critical points and observe that the set of critical values of a map fa is finite.

Denote by H the family of functions

H =

{
fa(z) =

Pa(e
z)

ekz
: degPa > k > 0 and δa > 0

}
,

where by Pfa we denote the post-critical set of fa, that is, the set

Pfa =
⋃
n≥0

fna (Crit(fa))

and

δa =
1

2
min

{
1

2
, dist(Jfa ,Pfa)

}
,

where

dist(Jfa ,Pfa) = inf{|z1 − z2| : z1 ∈ Jfa , z2 ∈ Pfa}

is the Euclidean distance between the Julia set of fa, Jfa , and the post-critical set of fa, Pfa .

The reason we define δa in such a way will be more visible later on, starting with

Chapter 3, and is due to the application (we shall need) of the Koebe Distortion Theorem

11



since one can observe that, for every y ∈ Jfa and for every n ≥ 1, there exists a unique

holomorphic inverse branch

(fna )−1
y : B(fna (y), 2δa)→ C

such that (fna )−1
y ◦ (fna )(y) = y.

Then there exists a numerical constant K such that, for z1, z2 ∈ Jfa with |z1−z2| < δa

and for y ∈ f−na (z1),

(2)
1

K
≤
|((fna )−1

y )′(z1)|
|((fna )−1

y )′(z2)|
≤ K.

Observe that Crit(fa) ⊂ Ffa , where Ffa is the Fatou set of fa. Consequently, maps in the

familyH do not have neither parabolic domains nor Herman rings nor Siegel disks. Moreover,

as was written in Chapter 1 they do not have neither wandering nor Baker domains. Also for

every point z in the Fatou set there exists (super)attracting cycle such that the trajectory

of z converges to this cycle.

2.1.2. The Cylinder and the Definition of JrFa

Since the map fa ∈ H is periodic with period 2πi, we consider it on the quotient

space P = C/∼ (the cylinder) where

z1 ∼ z2 iff z1 − z2 = 2kπi for some k ∈ Z.

If π : C → P is the natural projection, then, since the map π ◦ fa : C → P is constant on

equivalence classes of relation ∼, it induces a holomorphic map

Fa : P → P.

The cylinder P is endowed with Euclidean metric which will be denoted in what follows by

the same symbol |w − z| for all z, w ∈ P. The Julia set of Fa is defined to be

JFa = π(Jfa)

and observe that

Fa(JFa) = JFa = F−1
a (JFa).

12



We shall study the set Jrfa consisting of those points of Jfa that do not escape to

infinity under positive iterates of fa. In other words, if

I∞(fa) = {z ∈ C : lim
n→∞

fna (z) =∞},

then

Jrfa = Jfa\I∞(fa)

and, if

I∞(Fa) = {z ∈ P : lim
n→∞

F n(z) =∞},

then

JrFa = JFa\I∞(Fa).

In what follows we fix a ∈ Cn+1 and we denote for simplicity fa ∈ H by f . The

following Lemma reveals some background information for a better understanding of the

dynamical behavior of maps in our family H. This lemma will be used several times and it

will be a key technical ingredient for many proofs.

Observe first that, if we consider a = (a0, · · · , an) ∈ Cn+1, since

(3) fa(z) =
n∑
j=0

aje
(j−k)z

we have

(4) f ′a(z) =
n∑
j=0

aj(j − k)e(j−k)z.

Lemma 2.1. Let fa be a function of form (3). Then there exist M1,M2,M3 > 0 such that,

for every z with |Re z| ≥M3, the following inequalities hold.

(1) M1e
q|Re z| ≤ |fa(z)| ≤M2e

q|Re z|

(2) M1e
q|Re z| ≤ |f ′a(z)| ≤M2e

q|Re z|

(3) M1

M2
|f ′a(z)| ≤ |fa(z)| ≤ M2

M1
|f ′a(z)|

where q =

 k if Re z < 0

n− k if Re z > 0.

13



Proof. Note that (iii) follows from (i) and (ii). The proof of (i) and (ii) follows from the

fact that

|fa(z)| = |an|e(n−k)Re z + o(e(n−k)Re z) as Re z →∞

|fa(z)| = |a0|e−kRe z + o(e−kRe z) as Re z → −∞

and from the observation that f ′a is a function of the same (algebraic) type as fa (see (4)). �

2.1.3. The Uniformly Expanding Property

In this section we shall prove, mainly, the very important result, Proposition 2.2,

using McMullen’s result from [1], that any map fa ∈ H is uniformly expanding on its Julia

set.

Proposition 2.2. For every f ∈ H there exist c > 0 and γ > 1 such that

|(fn)′(z)| > cγn

for every z ∈ Jf .

Proof. By [1, Proposition 6.1], for all z ∈ Jf ,

(5) lim
n→∞

|(fn)′(z)| =∞.

Since f is periodic with period 2πi we consider

A = Jf ∩ {z : Im z ∈ [0, 2π]}

and we let Am denotes the open set

{z ∈ A : |(fm)′(z)| > 2}.

Then by (5) {Am}m≥1 is an open covering of A. Moreover, it follows from Lemma 2.1 that

there exists M such that, if |Re z| > M , then |f ′(z)| > 2. Therefore

{z ∈ A : |Re z| > M} ⊂ A1.

Since A ∩ {z : |Re z| ≤ M} is a compact subset of A, it follows that there exists k ≥ 1

such that the family {A1, A2, . . . , Ak} covers A. It implies that, for every z ∈ A, there exists

14



k(z) ≤ k for which |(fk(z))′(z)| > 2. Therefore, for every n > 0 and every z ∈ A we can split

the trajectory z, f(z), . . . , fn(z) into l ≤ bn
k
c+ 1 pieces of the form

zi, f(zi), . . . , f
k(zi)−1(zi)

for i = 1, . . . , l − 1, and, for i = l,

zl, f(zl), . . . f
j(zl) = fn(z),

where z1 = z, zi = fk(zi−1)(zi−1) and j is some integer smaller than k. Then

|(fn)′(z)| ≥ 2b
n
k
c∆k−1,

where

∆ = inf
z∈Jf
|f ′(z)| 6= 0,

since Jf contains no critical points and because of Lemma 2.1 (ii). It follows that

|(fn)′(z)| ≥ 2
n
k
−1∆k−1 =

∆k−1

2
(2

1
k )n.

�

2.2. Bounded Orbits and Classical Conformal Repellers.

We fix again a ∈ Cn+1 and we denote fa by f , Fa by F and the Julia set of F by JF .

Our goal in this section is to prove Proposition 2.5. In order to prove this proposition we

apply the thermodynamic formalism for compact repellers.

Definition 2.3. Let f be a holomorphic function from an open subset V of C into C and

J a compact subset of V. The triplet (J, V, f) is a conformal repeller if

(1) there are C > 0 and α > 1 such that |(fn)′(z)| ≥ Cαn for every z ∈ J and n ≥ 1.

(2) f−1(V ) is relatively compact in V with

J =
⋂
n≥1

f−n(V ).

(3) for any open set U with U ∩ J not empty, there is n > 0 such that

J ⊂ fn(U ∩ J).

15



It is worth noting that there are no critical points of f in J.

2.2.1. Conformal Repellers

Let (J, V, g) be a (mixing) conformal expanding repeller( see for example [2] for more

properties). In the proof of Proposition 2.5, J = J1(M) is a compact subset of C, limit of

a finite conformal iterated function system, g = F , is a holomorphic function for which J

is invariant and for which there exist γ > 1 and c > 0 such that, for all n ∈ N and for all

z ∈ J , |(gn)′(z)| ≥ cγn. For t ∈ R we consider the topological pressure defined by

Pz(t) = lim
n→∞

1

n
logPz(n, t),

where

Pz(n, t) =
∑

y∈g−n(z)

|(gn)′(y)|−t.

The function P (t) = Pz(t) as a function of t is independent of z, continuous, strictly

decreasing, limt→−∞ P (t) = +∞ and the following remarkable theorem holds.

Theorem 2.4 (Bowen’s Formula). Hausdorff dimension of J is the unique zero of P (t).

For more details and definitions concerning the thermodynamic formalism of confor-

mal expanding repellers ( initiated by Bowen and Ruelle) we refer the reader to [2].

In order to prove Proposition 2.5, i.e. to show that HD(J) > 1, we use Bowen’s

formula and we observe that, from the definition of Pz(n, t), it is enough to find a constant

C > 1 such that, for all z ∈ J ,

(6) Pz(1, 1) ≥ C.

Proposition 2.5. Let f ∈ H. Then the Hausdorff dimension of the set of points in Julia

set of f having bounded orbit is strictly greater than 1.

Proof. Let N be a large number, H = {z ∈ C : Re z > N}. Observe that there exists U

such that U ⊂ {z : s− π < Im z < s + π} for some s ∈ (−π, π], Re U > 0, f |U is univalent
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and f(U) = H. Note that, since N is large, by Lemma 2.1 there exists γN > 1 such that, if

Re z ≥ N , then

(7) |F ′(z)| = |f ′(z)| > γN .

For every M > N define

P (M) = {z ∈ U : N ≤ Re z ≤M}.

Then, for j ∈ Z, let Lj : H → U be defined by the formula

Lj(z) = (f |U)−1(z + 2πij),

and let

(8) Qj(M) = Lj(P (M)).

The set P(M) and the family of functions

{Lj}j∈KM

with

KM = {j ∈ Z : Qj(M) ⊂ IntP (M)},

define a finite conformal iterated function system . By J1(M) we denote its limit set. The

set J1(M) is forward F−invariant. From (7) and from the fact that the Julia set is the

closure of the set of repelling periodic points it follows that

(9) J1(M) ⊂ JF .

Next we need a condition for j which guarantees thatQj(M) ⊂ IntP (M) (equivalently

j ∈ KM) for all M large enough. Observe that

(10) KM ⊂ KM+1

for all M large enough. To prove (10), let j ∈ KM and let z ∈ Qj(M + 1) \ Qj(M). Note

that, if we assume that M > M2e
(n−k)(N+1), then we can be sure that Re z > N +1 (n and k

17



are defined in section 2.1.1). Therefore, to get (10), it is enough to prove that Re z < M +1.

Since

F (Qj(M + 1) \Qj(M)) = P (M + 1) \ P (M),

it follows from Lemma 2.1 that |F ′(z)| ≥ M1

M2
|f(z)| ≥M and, then,

Qj(M + 1) \Qj(M) ⊂ B
(
z,
M22π

M1M

)
⊂ B(z, 1).

But we know, that, for y ∈ Qj(M), Re y ≤M . This proves (10).

The next step is to prove that there exists j0 ∈ N such that, for all M ∈ N large

enough,

(11) j0, j0 + 1, . . . , ebM/2c ∈ KM .

Note that we can find j0 such that, for every j ≥ j0, Re Qj(M) > N . By Lemma 2.1 it is

enough to take

j0 =

⌈
M2e

(n−k)N + 2π

π

⌉
.

So, to prove (11) it remains to show that j < ebM/2c implies

Re Qj(M) ≤M.

Striving for a contradiction, suppose that j < ebM/2c and there exists z ∈ Qj(M) such that

Re z > M . Then by Lemma 2.1 we have

(12) |f(z)| > M1e
(n−k)M .

Since z ∈ Qj(M), f(z) ∈ P (M) + 2πij. Then the square of the distance from zero to the

upper-right corner of P (M) + 2πij is greater than |f(z)|2, i.e.

M2 + (s+ π + 2πj)2 > |f(z)|2.

By (12) and the assumption j < ebM/2c, it follows that

(M1e
(n−k)M)2 < M2 + (s+ π + 2π)2eM .

Hence we have the required contradiction since for large M the inequality is false.
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Finally observe that by Lemma 2.1, for j ∈ KM and z ∈ Qj(M), the following is true

|F ′(Lj(z + 2jπi))| ≤ M2

M1

|f(Lj(z + 2πij))| ≤ M2

M1

(2jπ + 2π +M).

Then

Pz(1, 1) =
∑

y∈F−1(z)∩J1(M)

1
|F ′(y)| =

∑
j∈KM

|L′j(z + 2jπi)|

≥
ebM/2c∑
j=j0

1
M2
M1

(2jπ+2π+M)
.

Since, if M is large enough, the right side of this inequality can be as large as we want, and

the proposition are proved. �
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APPENDIX

A B C 1 2 3
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In this appendix we have a couple of fancyish diagrams and a floating table.

A⊗B
id⊗pB

//

pA⊗id
��

A⊗QX

m2
//

pA⊗id
��

A

pA

��

QX ⊗B
id⊗pB

//

m1

��

QX ⊗QX

m $$
B

pB

// QX

Rξ!ξ
!QY ⊗QY

prξ
//

ε!ξ⊗id

��

Rξ!(ξ
!QY ⊗ ξ∗QY )

Rξ!(id⊗αξ)
��

Rξ!(ξ
!QY ⊗QX)

Φ−1
ξ (m2)

��

QY ⊗QY
m

// QY

Table A.2. Roots and root vectors for so2n+1

W WI

E6 A2
2 A1A

2
2 A5

E7 (A3
1)′ A3

1A2 A′5 A1A2A3 A2A4 A1A5 A6 A1D5 D6 E6

E8 A1A2A4 A3A4 A1A6 A7 A2D5 D7 A1E6 E7

F4 A2 Ã2 C3 B3 A1Ã2 Ã1A2

G2 A1 Ã1

H3 A1A1 A2 I2(5)

H4 A1A2 A3 A1I2(5) H3

Equation and theorem numbering in an appendix will almost certainly be funky.
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